Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
1.
J Bacteriol ; 204(1): e0039821, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34633868

RESUMO

Stenotrophomonas maltophilia has recently arisen as a prominent nosocomial pathogen because of its high antimicrobial resistance and ability to cause chronic respiratory infections. Often the infections are worsened by biofilm formation which enhances antibiotic tolerance. We have previously found that mutation of the gpmA gene, encoding the glycolytic enzyme phosphoglycerate mutase, impacts the formation of this biofilm on biotic and abiotic surfaces at early time points. This finding, indicating an association between carbon source and biofilm formation, led us to hypothesize that metabolism would influence S. maltophilia biofilm formation and planktonic growth. In the present study, we tested the impact of various growth substrates on biofilm levels and growth kinetics to determine metabolic requirements for these processes. We found that S. maltophilia wild type preferred amino acids versus glucose for planktonic and biofilm growth and that gpmA deletion inhibited growth in amino acids. Furthermore, supplementation of the ΔgpmA strain by glucose or ribose phenotypically complemented growth defects. These results suggest that S. maltophilia shuttles amino acid carbon through gluconeogenesis to an undefined metabolic pathway supporting planktonic and biofilm growth. Further evaluation of these metabolic pathways might reveal novel metabolic activities of this pathogen. IMPORTANCE Stenotrophomonas maltophilia is a prominent opportunistic pathogen that often forms biofilms during infection. However, the molecular mechanisms of virulence and biofilm formation are poorly understood. The glycolytic enzyme phosphoglycerate mutase appears to play a role in biofilm formation, and we used a mutant in its gene (gpmA) to probe the metabolic circuitry potentially involved in biofilm development. The results of our study indicate that S. maltophilia displays unique metabolic activities, which could be exploited for inhibiting growth and biofilm formation of this pathogen.


Assuntos
Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Regulação Bacteriana da Expressão Gênica/fisiologia , Redes e Vias Metabólicas/fisiologia , Stenotrophomonas maltophilia/fisiologia , Aminoácidos/metabolismo , Aminoácidos/farmacologia , Proteínas de Bactérias/genética , Meios de Cultura , Ribose/metabolismo , Ribose/farmacologia , Stenotrophomonas maltophilia/genética
2.
Sci Rep ; 11(1): 13435, 2021 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-34183701

RESUMO

Stenotrophomonas maltophilia has plant growth-promoting potential, and interaction with Arachis hypogaea changes host-plant physiology, biochemistry, and metabolomics, which provides tolerance under the N2 starvation conditions. About 226 suppression subtractive hybridization clones were obtained from plant-microbe interaction, of which, about 62% of gene sequences were uncharacterized, whereas 23% of sequences were involved in photosynthesis. An uncharacterized SSH clone, SM409 (full-length sequence showed resemblance with Cytb6), showed about 4-fold upregulation during the interaction was transformed to tobacco for functional validation. Overexpression of the AhCytb6 gene enhanced the seed germination efficiency and plant growth under N2 deficit and salt stress conditions compared to wild-type and vector control plants. Results confirmed that transgenic lines maintained high photosynthesis and protected plants from reactive oxygen species buildup during stress conditions. Microarray-based whole-transcript expression of host plants showed that out of 272,410 genes, 8704 and 24,409 genes were significantly (p < 0.05) differentially expressed (> 2 up or down-regulated) under N2 starvation and salt stress conditions, respectively. The differentially expressed genes belonged to different regulatory pathways. Overall, results suggested that overexpression of AhCytb6 regulates the expression of various genes to enhance plant growth under N2 deficit and abiotic stress conditions by modulating plant physiology.


Assuntos
Arachis/genética , Citocromos b6/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Nicotiana/genética , Fixação de Nitrogênio/genética , Nitrogênio/deficiência , Proteínas de Plantas/genética , Estresse Salino/genética , Stenotrophomonas maltophilia/fisiologia , Simbiose/genética , Arachis/enzimologia , Biomassa , Mudança Climática , Simulação por Computador , Citocromos b6/fisiologia , Modelos Genéticos , Nitrogênio/metabolismo , Fotossíntese , Proteínas de Plantas/fisiologia , Plantas Geneticamente Modificadas , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Nicotiana/enzimologia , Nicotiana/crescimento & desenvolvimento , Nicotiana/microbiologia , Regulação para Cima
3.
Dev Comp Immunol ; 124: 104175, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34147569

RESUMO

Bacterial disease outbreaks in filter feeder bivalve Hyriopsis cumingii as water contamination become more frequent in the water ecosystem, especially in intensive aquaculture habitats. To characterize host-pathogen interactions between H. cumingii and bacterial infection, we investigated the effects of Stenotrophomonas maltophilia HOP3 and Aeromonas veronii GL1 on the antioxidant response, tissue invasion and transcriptome expression of H. cumingii by infectivity trials. We showed that bacterial infections resulted in tubular necrosis of the hepatopancreas and induced the acute immune response in H. cumingii. The transcriptomic study identified a total of 5957 differentially expressed genes (DEGs) after A. veronii challenge. These DEGs were implicated in 302 KEGG pathways, notably in Apoptosis, Phagosome and Lysosome. The results showed that the relative expressions of all six immune-related DEGs were effectively stimulated with A. veronii, accompanied by tissue differences. Overall, these findings will contribute to an analysis of the immune response of H. cumingii to bacterial infection at the transcriptomic level and its genomic resource for research.


Assuntos
Expressão Gênica/imunologia , Infecções por Bactérias Gram-Negativas/imunologia , Transcriptoma/imunologia , Unionidae/imunologia , Aeromonas veronii/fisiologia , Animais , Antioxidantes/metabolismo , Aquicultura , Infecções por Bactérias Gram-Negativas/genética , Infecções por Bactérias Gram-Negativas/patologia , Hepatopâncreas/imunologia , Hepatopâncreas/patologia , Interações Hospedeiro-Patógeno/imunologia , Stenotrophomonas maltophilia/fisiologia , Distribuição Tecidual , Unionidae/genética , Unionidae/microbiologia , Fatores de Virulência/imunologia
4.
Future Microbiol ; 16(2): 83-93, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33470844

RESUMO

Aim: To evaluate the activity of five antimicrobials against young and mature Stenotrophomonas maltophilia biofilms. Materials & methods: Nineteen clinical strains from hemoculture of hemodialysis patients were tested for biofilm kinetics, MIC and minimum biofilm inhibitory concentration (MBIC) in young and mature biofilms. Results: All strains were moderate biofilm producers. MIC showed total susceptibility to levofloxacin and trimethoprim-sulfamethoxazole and partial resistance to ceftazidime (63.2%) and gentamicin (21%). Young and mature biofilms showed the lowest MBIC/MIC ratio for gentamicin, chloramphenicol and levofloxacin, respectively. The highest MBIC/MIC was for trimethoprim-sulfamethoxazole (young) and ceftazidime (mature). Conclusion: Gentamicin displayed surprising activity against S. maltophilia biofilms. Chloramphenicol was indicated as a good option against young S. maltophilia biofilms, and trimethoprim-sulfamethoxazole showed limited antibiofilm activity.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Infecções por Bactérias Gram-Negativas/microbiologia , Stenotrophomonas maltophilia/efeitos dos fármacos , Ceftazidima/farmacologia , Farmacorresistência Bacteriana Múltipla , Humanos , Levofloxacino/farmacologia , Testes de Sensibilidade Microbiana , Minociclina/farmacologia , Stenotrophomonas maltophilia/crescimento & desenvolvimento , Stenotrophomonas maltophilia/fisiologia , Combinação Trimetoprima e Sulfametoxazol/farmacologia
5.
Mol Immunol ; 130: 37-48, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33360150

RESUMO

BACKGROUND: Smalotrophomonas maltophilia(S. maltophilia) is common in nosocomial infections. However, few studies have revealed the effect of S. maltophilia on cellular immunity in the host's immune system up to now. In clinical work, we accidentally discovered that S. maltophilia directly stimulated T cells to secrete IFN-γ. MATERIALS AND METHODS: S. maltophilia was co-cultured with PBMCs to detect secretion of cytokines (IFN-γ, TNF-α and IL-2) and expression of cell surface molecules (CD3, CD4, CD8, CD69, CD147 and CD152) of T cells. We used light microscopy and electron microscopy to observe the cell morphology and subcellular structure of S. maltophilia co-cultured with lymphocytes. Flow cytometry and Western Blot were used to detect the expression of PD-1/PD-L1 and annexin V in cells. RESULTS: T cells stimulated by S. maltophilia secreted a large amount of IL-2, IFN-γ, and TNF-α. The expression of CD4 and CD8 on the cell surface were declined, accompanied by the activation of the PD-1/PD-L1 pathway, which eventually led to the massive apoptosis of T cells. Electron microscopy showed that cells showed significant apoptotic morphology. Blocking the PD-1/PD-L1 pathway can inhibit the apoptosis-inducing effect of S. maltophilia on T cells. CONCLUSIONS: These indicates that T cells are inhibited after being stimulated by S. maltophilia, and then accelerated to induce death without the initiation of an immunologic cascade. This paper demonstrates for the first time the inhibitory effect of S. maltophilia on cellular immunity, and the immunosuppressive effect induced by infection of S. maltophilia should be considered.


Assuntos
Apoptose/fisiologia , Infecções por Bactérias Gram-Negativas/imunologia , Imunidade Celular , Stenotrophomonas maltophilia/fisiologia , Linfócitos T/fisiologia , Adulto , Animais , Antígeno B7-H1/metabolismo , Contagem de Células , Morte Celular/genética , Morte Celular/imunologia , Células Cultivadas , Regulação para Baixo/imunologia , Infecções por Bactérias Gram-Negativas/patologia , Interações Hospedeiro-Patógeno/imunologia , Humanos , Interferon gama/metabolismo , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais/imunologia , Linfócitos T/patologia
6.
Can J Microbiol ; 67(6): 491-495, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33151759

RESUMO

The persistence of Stenotrophomonas maltophilia, especially in hospital environments where disinfectants are used intensively, is one of the important factors that allow this opportunistic pathogen to establish nosocomial infections. In the present study, we illustrated that S. maltophilia possesses adaptive resistance to the disinfectant benzalkonium chloride (BAC). This BAC adaptation was abolished in the ΔmfsQ mutant, in which a gene encoding an efflux transporter belonging to the major facilitator superfamily (MFS) was deleted. The ΔmfsQ mutant also showed increased susceptibility to BAC and chlorhexidine gluconate compared with a parental wild type. The expression of mfsQ increased upon exposure to quaternary ammonium compounds, including BAC. Thus, the results of this study suggest that mfsQ plays a role in both adaptive and nonadaptive protection of S. maltophilia from the toxicity of the disinfectant BAC.


Assuntos
Compostos de Benzalcônio/farmacologia , Desinfetantes/farmacologia , Farmacorresistência Bacteriana/genética , Proteínas de Membrana Transportadoras/genética , Stenotrophomonas maltophilia/fisiologia , Genes Bacterianos , Humanos , Proteínas de Membrana Transportadoras/metabolismo , Testes de Sensibilidade Microbiana , Mutação , Compostos de Amônio Quaternário/farmacologia , Stenotrophomonas maltophilia/efeitos dos fármacos , Stenotrophomonas maltophilia/genética
7.
J Mater Chem B ; 8(47): 10845-10853, 2020 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-33180891

RESUMO

Magnetic cobalt Ferrite nanoparticles capped with caprylate groups, CH3(CH2)6CO2-, have been synthesized using a novel non-hydrolytic coprecipitation method under inert conditions. Particle diameter was characterized using dynamic light scattering (DLS) and transmission electron microscopy (TEM). The spinel ferrite crystal phase was verified using X-ray diffraction (XRD), and the presence of the capping agent was confirmed using Fourier Transform Infrared spectroscopy (FTIR). Bactericidal effects of the particles were tested against broth cultures of Erwinia carotovora and Stenotrophomonas maltophilia. The final particles had an average diameter of 3.81 nm and readily responded to a neodymium magnet. The particles did have a significant effect on the OD600 of both broth cultures.


Assuntos
Antibacterianos/síntese química , Caprilatos/síntese química , Compostos Férricos/síntese química , Nanopartículas Metálicas/química , Pectobacterium carotovorum/efeitos dos fármacos , Stenotrophomonas maltophilia/efeitos dos fármacos , Antibacterianos/farmacologia , Caprilatos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Cobalto/farmacologia , Relação Dose-Resposta a Droga , Compostos Férricos/farmacologia , Humanos , Hidrólise , Nanopartículas Metálicas/administração & dosagem , Pectobacterium carotovorum/fisiologia , Stenotrophomonas maltophilia/fisiologia , Células THP-1
8.
Appl Environ Microbiol ; 86(24)2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-33097507

RESUMO

Stenotrophomonas maltophilia is one of the most frequently isolated multidrug-resistant nosocomial opportunistic pathogens. It contributes to disease progression in cystic fibrosis (CF) patients and is frequently isolated from wounds, infected tissues, and catheter surfaces. On these diverse surfaces S. maltophilia lives in single-species or multispecies biofilms. Since very little is known about common processes in biofilms of different S. maltophilia isolates, we analyzed the biofilm profiles of 300 clinical and environmental isolates from Europe of the recently identified main lineages Sgn3, Sgn4, and Sm2 to Sm18. The analysis of the biofilm architecture of 40 clinical isolates revealed the presence of multicellular structures and high phenotypic variability at a strain-specific level. Further, transcriptome analyses of biofilm cells of seven clinical isolates identified a set of 106 shared strongly expressed genes and 33 strain-specifically expressed genes. Surprisingly, the transcriptome profiles of biofilm versus planktonic cells revealed that just 9.43% ± 1.36% of all genes were differentially regulated. This implies that just a small set of shared and commonly regulated genes is involved in the biofilm lifestyle. Strikingly, iron uptake appears to be a key factor involved in this metabolic shift. Further, metabolic analyses implied that S. maltophilia employs a mostly fermentative growth mode under biofilm conditions. The transcriptome data of this study together with the phenotypic and metabolic analyses represent so far the largest data set on S. maltophilia biofilm versus planktonic cells. This study will lay the foundation for the identification of strategies for fighting S. maltophilia biofilms in clinical and industrial settings.IMPORTANCE Microorganisms living in a biofilm are much more tolerant to antibiotics and antimicrobial substances than planktonic cells are. Thus, the treatment of infections caused by microorganisms living in biofilms is extremely difficult. Nosocomial infections (among others) caused by S. maltophilia, particularly lung infection among CF patients, have increased in prevalence in recent years. The intrinsic multidrug resistance of S. maltophilia and the increased tolerance to antimicrobial agents of its biofilm cells make the treatment of S. maltophilia infection difficult. The significance of our research is based on understanding the common mechanisms involved in biofilm formation of different S. maltophilia isolates, understanding the diversity of biofilm architectures among strains of this species, and identifying the differently regulated processes in biofilm versus planktonic cells. These results will lay the foundation for the treatment of S. maltophilia biofilms.


Assuntos
Biofilmes , Genes Bacterianos , Variação Genética , Stenotrophomonas maltophilia/fisiologia , Stenotrophomonas maltophilia/patogenicidade , Europa (Continente) , Perfilação da Expressão Gênica , Fenótipo , Proteólise , Stenotrophomonas maltophilia/genética , Virulência
9.
BMC Microbiol ; 20(1): 312, 2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-33054754

RESUMO

BACKGROUND: Stenotrophomonas maltophilia, an opportunistic pathogen, is ubiquitously present in various environments, signifying its high capability of environmental adaptation. Two-component regulatory system (TCS) is a powerful implement to help organisms to survive in different environments. In clinic, treatment of S. maltophilia infection is difficult because it is naturally resistant to many antibiotics, highlighting the necessity to develop novel drugs or adjuvants. Given their critical and extensively regulatory role, TCS system has been proposed as a convincing target for novel drugs or adjuvants. PhoPQ TCS, a highly conserved TCS in several pathogens, plays crucial roles in low-magnesium adaption, polymyxin resistance, and virulence. In this study, we aimed to characterize the role of PhoPQ TCS of S. maltophilia in antibiotic susceptibility, physiology, stress adaptation, and virulence. RESULTS: To characterize PhoPQ system, phoP single mutant as well as phoP and phoQ double mutant were constructed. Distinct from most phoPQ systems of other microorganisms, two features were observed during the construction of phoP and phoQ single deletion mutant. Firstly, the phoQ mutant was not successfully obtained. Secondly, the compromised phenotypes of phoP mutant were not reverted by complementing an intact phoP gene, but were partially restored by complementing a phoPQ operon. Thus, wild-type KJ, phoP mutant (KJΔPhoP), phoPQ mutant (KJΔPhoPQ), and complemented strain (KJΔPhoPQ (pPhoPQ)) were used for functional assays, including antibiotic susceptibility, physiology (swimming motility and secreted protease activity), stress adaptation (oxidative, envelope, and iron-depletion stresses), and virulence to Caenorhabditis elegans. KJΔPhoPQ totally lost swimming motility, had enhanced secreted protease activity, increased susceptibility to antibiotics (ß-lactam, quinolone, aminoglycoside, macrolide, chloramphenicol, and sulfamethoxazole/ trimethoprim), menadione, H2O2, SDS, and 2,2'-dipyridyl, as well as attenuated virulence to C. elegans. Trans-complementation of KJΔPhoPQ with phoPQ reverted these altered phenotypes to the wild-type levels. CONCLUSIONS: Given the critical and global roles of PhoPQ TCS in antibiotic susceptibility, physiology, stress adaptation, and virulence, PhoPQ is a potential target for the design of drugs or adjuvants.


Assuntos
Proteínas de Bactérias/fisiologia , Stenotrophomonas maltophilia/fisiologia , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana , Virulência , Resistência beta-Lactâmica , beta-Lactamases
10.
Can J Microbiol ; 66(11): 670-677, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32640165

RESUMO

Nonrhizobial root nodule endophytic bacteria are known to have beneficial effects on host plants and are also considered contaminants or opportunists. They grow either individually or as a co-occupant of the root nodules of legumes. In this study, a nonrhizobial endophytic bacterial strain was isolated from the root nodules of the medicinal legume Mucuna utilis var. capitata L.; phenotypic, genotypic, and agricultural characterization was performed using a HiMedia kit and 16S rRNA sequencing. This strain showed tremendous seedling growth potential (30%), compared with the control, as well as a strong antagonistic nature against the plant pathogenic fungus Fusarium udum when plant growth parameters were analyzed. The strain, identified by 16S rRNA as Stenotrophomonas maltophilia, showed a multitude of plant-growth-promoting attributes both direct (IAA, phosphate solubilization) and indirect (ACC deaminase, siderophore) and enhanced the growth of host plant in field trials. This is the first report of the plant-growth-promoting potential of this endophytic bacterium from the nodules of M. utilis var. capitata L.; hence, it has potential for use in various biotechnological applications in various industries.


Assuntos
Endófitos/fisiologia , Mucuna/crescimento & desenvolvimento , Mucuna/microbiologia , Nódulos Radiculares de Plantas/microbiologia , Stenotrophomonas maltophilia/fisiologia , Antibiose , Carbono-Carbono Liases/metabolismo , Endófitos/classificação , Endófitos/genética , Endófitos/isolamento & purificação , Ácidos Indolacéticos/metabolismo , Fosfatos/metabolismo , RNA Ribossômico 16S/genética , Sideróforos/metabolismo , Stenotrophomonas maltophilia/classificação , Stenotrophomonas maltophilia/genética , Stenotrophomonas maltophilia/isolamento & purificação
11.
BMC Microbiol ; 20(1): 170, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32560629

RESUMO

BACKGROUND: Stenotrophomonas maltophilia is an emerging nosocomial pathogen that causes infection in immunocompromised patients. S. maltophilia isolates are genetically diverse, contain diverse virulence factors, and are variably pathogenic within several host species. Members of the Stenotrophomonas genus are part of the native microbiome of C. elegans, being found in greater relative abundance within the worm than its environment, suggesting that these bacteria accumulate within C. elegans. Thus, study of the C. elegans-Stenotrophomonas interaction is of both medical and ecological significance. To identify host defense mechanisms, we analyzed the C. elegans transcriptomic response to S. maltophilia strains of varying pathogenicity: K279a, an avirulent clinical isolate, JCMS, a virulent strain isolated in association with soil nematodes near Manhattan, KS, and JV3, an even more virulent environmental isolate. RESULTS: Overall, we found 145 genes that are commonly differentially expressed in response to pathogenic S. maltophilia strains, 89% of which are upregulated, with many even further upregulated in response to JV3 as compared to JCMS. There are many more JV3-specific differentially expressed genes (225, 11% upregulated) than JCMS-specific differentially expressed genes (14, 86% upregulated), suggesting JV3 has unique pathogenic mechanisms that could explain its increased virulence. We used connectivity within a gene network model to choose pathogen-specific and strain-specific differentially expressed candidate genes for functional analysis. Mutations in 13 of 22 candidate genes caused significant differences in C. elegans survival in response to at least one S. maltophilia strain, although not always the strain that induced differential expression, suggesting a dynamic response to varying levels of pathogenicity. CONCLUSIONS: Variation in observed pathogenicity and differences in host transcriptional responses to S. maltophilia strains reveal that strain-specific mechanisms play important roles in S. maltophilia pathogenesis. Furthermore, utilizing bacteria closely related to strains found in C. elegans natural environment provides a more realistic interaction for understanding host-pathogen response.


Assuntos
Caenorhabditis elegans/crescimento & desenvolvimento , Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes , Stenotrophomonas maltophilia/fisiologia , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/microbiologia , Proteínas de Caenorhabditis elegans/genética , Regulação da Expressão Gênica no Desenvolvimento , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência de RNA , Solo/parasitologia , Especificidade da Espécie , Stenotrophomonas maltophilia/patogenicidade
12.
Future Microbiol ; 15: 497-508, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32478618

RESUMO

Aim: To investigate if the prior use of nontargeted antibiotics induces cross-tolerance in Stenotrophomonas maltophilia. Methods: Antibiotic induction was performed to evaluate daptomycin and vancomycin as possible tolerance-inducing drugs measured by minimum bactericidal concentration/minimum inhibitory concentration (MIC) ratio, adapted disk-diffusion tests and time-kill curves. Results: After antibiotic exposure, three potentially tolerant strains were isolated, maintaining the same MIC value of levofloxacin, with minimum bactericidal concentration/MIC ratio slightly higher than the parental. In the adapted disk-diffusion test, one strain (D25) showed high tolerance level for levofloxacin, ceftazidime and ticarcillin-clavulanate. In time-kill activity of levofloxacin, D25 presented a subpopulation of persisters with survival rate higher (1.6-fold) than the parental. Conclusion: Previous exposure of S. maltophilia to daptomycin can induce cross-tolerance to ceftazidime and ticarcillin-clavulanate and cross-persistence to levofloxacin.


Assuntos
Antibacterianos/farmacologia , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Stenotrophomonas maltophilia/efeitos dos fármacos , Animais , Farmacorresistência Bacteriana , Tolerância a Medicamentos , Infecções por Bactérias Gram-Negativas/microbiologia , Humanos , Stenotrophomonas maltophilia/genética , Stenotrophomonas maltophilia/fisiologia
13.
Microbes Infect ; 22(1): 60-64, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31430538

RESUMO

Stenotrophomonas maltophilia biofilm formation is of increasing medical concern, particularly for lung infections. However, the molecular mechanisms facilitating the biofilm lifestyle in S. maltophilia are poorly understood. We generated and screened a transposon mutant library for mutations that lead to altered biofilm formation compared to wild type. One of these mutations, in the gene for glycolytic enzyme phosphoglycerate mutase (gpmA), resulted in impaired attachment on abiotic and biotic surfaces. As adherence to a surface is the initial step in biofilm developmental processes, our results reveal a unique factor that could affect S. maltophilia biofilm initiation and, possibly, subsequent development.


Assuntos
Aderência Bacteriana , Proteínas de Bactérias/metabolismo , Fosfoglicerato Mutase/metabolismo , Stenotrophomonas maltophilia/fisiologia , Proteínas de Bactérias/genética , Biofilmes/crescimento & desenvolvimento , Células Cultivadas , Células Epiteliais/microbiologia , Humanos , Mutação , Fosfoglicerato Mutase/genética , Plásticos/metabolismo , Stenotrophomonas maltophilia/enzimologia
14.
Future Microbiol ; 14: 1417-1428, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31777284

RESUMO

Aims: To study physiological and proteomic analysis of Stenotrophomonas maltophilia grown under iron-limited condition. Methods: One clinical and environmental S. maltophilia isolates grown under iron-depleted conditions were studied for siderophore production, ability to kill nematodes and alteration in protein expression using isobaric tags for relative and absolute quantification (ITRAQ). Results & conclusions: Siderophore production was observed in both clinical and environmental strains under iron-depleted conditions. Caenorhabditis elegans assay showed higher killing rate under iron-depleted (96%) compared with normal condition (76%). The proteins identified revealed, 96 proteins upregulated and 26 proteins downregulated for the two isolates under iron depletion. The upregulated proteins included several iron acquisition proteins, metabolic proteins and putative virulence proteins.


Assuntos
Proteínas de Bactérias/metabolismo , Ferro/metabolismo , Proteoma , Stenotrophomonas maltophilia/fisiologia , Animais , Proteínas de Bactérias/genética , Caenorhabditis elegans/microbiologia , Microbiologia Ambiental , Infecções por Bactérias Gram-Negativas/microbiologia , Sideróforos/genética , Sideróforos/metabolismo , Stenotrophomonas maltophilia/genética , Estresse Fisiológico , Virulência , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
15.
Expert Rev Anti Infect Ther ; 17(11): 877-893, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31658838

RESUMO

Introduction: Infections caused by the opportunistic Stenotrophomonas maltophilia pathogen in immunocompromised patients are complicated to treat due to antibiotic resistance and the ability of the bacteria to produce biofilm.Areas covered: A MEDLINE/PubMed search was performed of available literature to describe the role of biofilm produced by S. maltophilia in the diseases it causes, including biofilm-influencing factors, the biofilm forming process and composition. The antimicrobial resistance due to S. maltophilia biofilm production and current antibiofilm strategies is also included.Expert opinion: Through the production of biofilm, S. maltophilia strains can easily adhere to the surfaces in hospital settings and aid in its transmission. The biofilm can also cause antibiotic tolerance rendering some of the therapeutic options ineffective, causing setbacks in the selection of an appropriate treatment. Conventional susceptibility tests do not yet offer therapeutic guidelines to treat biofilm-associated infections. Current S. maltophilia biofilm control strategies include natural and synthetic compounds, chelating agents, and commonly prescribed antibiotics. As biofilm age and matrix composition affect the level of antibiotic tolerance, their characterization should be included in biofilm susceptibility testing, in addition to molecular and proteomic analyzes. As for now, several commonly recommended antibiotics can be used to treat biofilm-related S. maltophilia infections.


Assuntos
Biofilmes/crescimento & desenvolvimento , Infecções por Bactérias Gram-Negativas/epidemiologia , Stenotrophomonas maltophilia/isolamento & purificação , Animais , Antibacterianos/farmacologia , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Infecções por Bactérias Gram-Negativas/microbiologia , Humanos , Hospedeiro Imunocomprometido , Testes de Sensibilidade Microbiana , Proteômica , Stenotrophomonas maltophilia/efeitos dos fármacos , Stenotrophomonas maltophilia/fisiologia
16.
PLoS Pathog ; 15(9): e1007651, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31513674

RESUMO

Bacterial type IV secretion systems (T4SS) are a highly diversified but evolutionarily related family of macromolecule transporters that can secrete proteins and DNA into the extracellular medium or into target cells. It was recently shown that a subtype of T4SS harboured by the plant pathogen Xanthomonas citri transfers toxins into target cells. Here, we show that a similar T4SS from the multi-drug-resistant opportunistic pathogen Stenotrophomonas maltophilia is proficient in killing competitor bacterial species. T4SS-dependent duelling between S. maltophilia and X. citri was observed by time-lapse fluorescence microscopy. A bioinformatic search of the S. maltophilia K279a genome for proteins containing a C-terminal domain conserved in X. citri T4SS effectors (XVIPCD) identified twelve putative effectors and their cognate immunity proteins. We selected a putative S. maltophilia effector with unknown function (Smlt3024) for further characterization and confirmed that it is indeed secreted in a T4SS-dependent manner. Expression of Smlt3024 in the periplasm of E. coli or its contact-dependent delivery via T4SS into E. coli by X. citri resulted in reduced growth rates, which could be counteracted by expression of its cognate inhibitor Smlt3025 in the target cell. Furthermore, expression of the VirD4 coupling protein of X. citri can restore the function of S. maltophilia ΔvirD4, demonstrating that effectors from one species can be recognized for transfer by T4SSs from another species. Interestingly, Smlt3024 is homologous to the N-terminal domain of large Ca2+-binding RTX proteins and the crystal structure of Smlt3025 revealed a topology similar to the iron-regulated protein FrpD from Neisseria meningitidis which has been shown to interact with the RTX protein FrpC. This work expands our current knowledge about the function of bacteria-killing T4SSs and increases the panel of effectors known to be involved in T4SS-mediated interbacterial competition, which possibly contribute to the establishment of S. maltophilia in clinical and environmental settings.


Assuntos
Proteínas de Bactérias/fisiologia , Stenotrophomonas maltophilia/fisiologia , Stenotrophomonas maltophilia/patogenicidade , Sistemas de Secreção Tipo IV/fisiologia , Sequência de Aminoácidos , Antibiose/genética , Antibiose/fisiologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sequência Conservada , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Genes Bacterianos , Infecções por Bactérias Gram-Negativas/microbiologia , Humanos , Proteínas Reguladoras de Ferro/química , Proteínas Reguladoras de Ferro/genética , Proteínas Reguladoras de Ferro/fisiologia , Modelos Moleculares , Infecções Oportunistas/microbiologia , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade da Espécie , Stenotrophomonas maltophilia/genética , Sistemas de Secreção Tipo IV/química , Sistemas de Secreção Tipo IV/genética , Xanthomonas/genética , Xanthomonas/crescimento & desenvolvimento
17.
Infect Immun ; 87(9)2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31235638

RESUMO

Stenotrophomonas maltophilia is an emerging opportunistic and nosocomial pathogen. S. maltophilia is also a risk factor for lung exacerbations in cystic fibrosis patients. S. maltophilia attaches to various mammalian cells, and we recently documented that the bacterium encodes a type II secretion system which triggers detachment-induced apoptosis in lung epithelial cells. We have now confirmed that S. maltophilia also encodes a type IVA secretion system (VirB/VirD4 [VirB/D4] T4SS) that is highly conserved among S. maltophilia strains and, looking beyond the Stenotrophomonas genus, is most similar to the T4SS of Xanthomonas To define the role(s) of this T4SS, we constructed a mutant of strain K279a that is devoid of secretion activity due to loss of the VirB10 component. The mutant induced a higher level of apoptosis upon infection of human lung epithelial cells, indicating that a T4SS effector(s) has antiapoptotic activity. However, when we infected human macrophages, the mutant triggered a lower level of apoptosis, implying that the T4SS also elaborates a proapoptotic factor(s). Moreover, when we cocultured K279a with strains of Pseudomonas aeruginosa, the T4SS promoted the growth of S. maltophilia and reduced the numbers of heterologous bacteria, signaling that another effector(s) has antibacterial activity. In all cases, the effect of the T4SS required S. maltophilia contact with its target. Thus, S. maltophilia VirB/D4 T4SS appears to secrete multiple effectors capable of modulating death pathways. That a T4SS can have anti- and prokilling effects on different targets, including both human and bacterial cells, has, to our knowledge, not been seen before.


Assuntos
Apoptose/fisiologia , Pseudomonas aeruginosa/fisiologia , Stenotrophomonas maltophilia/patogenicidade , Sistemas de Secreção Tipo IV/fisiologia , Fatores de Virulência/fisiologia , Proteínas de Bactérias/fisiologia , Fibrose Cística/complicações , Humanos , Macrófagos/microbiologia , Stenotrophomonas maltophilia/fisiologia
18.
J Bacteriol ; 201(7)2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30642989

RESUMO

The airway fluids of cystic fibrosis (CF) patients contain local pH gradients and are more acidic than those of healthy individuals. pH is a critical factor that is often overlooked in studies seeking to recapitulate the infection microenvironment. We sought to determine the impact of pH on the physiology of a ubiqituous yet understudied microbe, Stenotrophomonas maltophilia Phylogenomics was first used to reconstruct evolutionary relationships between 74 strains of S. maltophilia (59 from CF patients). Neither the core genome (2,158 genes) nor the accessory genome (11,978 genes) distinguish the CF and non-CF isolates; however, strains from similar isolation sources grouped into the same subclades. We grew two human and six CF S. maltophilia isolates from different subclades at a range of pH values and observed impaired growth and altered antibiotic tolerances at pH 5. Transcriptomes revealed increased expression of both antibiotic resistance and DNA repair genes in acidic conditions. Although the gene expression profiles of S. maltophilia in lab cultures and CF sputum were distinct, we found that the same genes associated with low pH were also expressed during infection, and the higher pH cultures were more similar to sputum metatranscriptomes. Our findings suggest that S. maltophilia is not well adapted to acidity and may cope with low pH by expressing stress response genes and colonizing less acidic microenvironments. As a whole, our study underlines the impact of microenvironments on bacterial colonization and adaptation in CF infections.IMPORTANCE Understanding bacterial responses to physiological conditions is an important priority for combating opportunistic infections. The majority of CF patients succumb to inflammation and necrosis in the airways, arising from chronic infection due to ineffective mucociliary clearance. Steep pH gradients characterize the CF airways but are not often incorporated in standard microbiology culture conditions. Stenotrophomonas maltophilia is a prevalent CF opportunistic pathogen also found in many disparate environments, yet this bacterium's contribution to CF lung damage and its response to changing environmental factors remain largely understudied. Here, we show that pH impacts the physiology and antibiotic susceptibility of S. maltophilia, with implications for the development of relevant in vitro models and assessment of antibiotic sensitivity.


Assuntos
Adaptação Fisiológica , Fibrose Cística/complicações , Infecções por Bactérias Gram-Negativas/microbiologia , Stenotrophomonas maltophilia/efeitos dos fármacos , Stenotrophomonas maltophilia/fisiologia , Perfilação da Expressão Gênica , Humanos , Concentração de Íons de Hidrogênio , Stenotrophomonas maltophilia/genética , Stenotrophomonas maltophilia/isolamento & purificação
19.
BMC Res Notes ; 11(1): 569, 2018 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-30097057

RESUMO

OBJECTIVE: Stenotrophomonas maltophilia is a Gram-negative bacterium commonly isolated from nosocomial infections. Analysis of the genome of the clinical S. maltophilia isolate K279a indicates that it encodes a diffusible signal factor (DSF)-dependent cell-cell signaling mechanism that is highly similar to the system previously described in phytopathogens from the genera Xanthomonas and Xylella. Our objective was to study the function of DSF signaling in the clinical strain S. maltophilia K279a using genetic and functional genomic analyses. RESULTS: We compared the wild-type strain with a mutant deficient in the rpfF (regulation of pathogenicity factors) gene that is essential for the synthesis of DSF. The effects of disruption of DSF signaling were pleiotropic with an impact on virulence, biofilm formation and pathogenesis. The phenotypic effects of rpfF mutation in S. maltophilia could be reversed by addition of exogenous DSF. Taken together, we demonstrate that DSF signaling regulates factors contributing to virulence, biofilm formation and motility of this important opportunistic pathogen.


Assuntos
Proteínas de Bactérias/fisiologia , Stenotrophomonas maltophilia/fisiologia , Transdução de Sinais , Stenotrophomonas maltophilia/patogenicidade , Virulência , Fatores de Virulência , Xylella
20.
Trends Microbiol ; 26(7): 637-638, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29754971

RESUMO

This infographic describes the key regulated traits of Stenotrophomonas maltophilia, important for beneficial plant interactions, and also its increasing incidence as a nosocomial and community-acquired infection. Stenotrophomonas maltophilia is a cosmopolitan and ubiquitous bacterium found in a range of environmental habitats, including extreme ones, although in nature it is mainly associated with plants. S. maltophilia fulfils important ecosystem functions in the sulfur and nitrogen cycles, in degradation of complex compounds and pollutants, and in promoti on of plant growth and health. Stenotrophomonas can also colonize extreme man-made niches in hospitals, space shuttles, and clean rooms. S. maltophilia has emerged as a global opportunistic human pathogen, which does not usually infect healthy hosts but is associated with high morbidity and mortality in severely immunocompromised and debilitated individuals. S. maltophilia can also be recovered from polymicrobial infections, most notably from the respiratory tract of cystic fibrosis patients. Close relatives of S. maltophilia, for example, S. rhizophila, provide a harmless alternative for biotechnological applications without human health risks.


Assuntos
Infecções Comunitárias Adquiridas/microbiologia , Stenotrophomonas maltophilia/fisiologia , Stenotrophomonas maltophilia/patogenicidade , Aderência Bacteriana , Biodegradação Ambiental , Biofilmes , Fibrose Cística/microbiologia , Humanos , Infecções Oportunistas/microbiologia , Desenvolvimento Vegetal , Infecções Respiratórias/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA